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On a class of unsteady boundary layers 
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A class of unsteady boundary layers that form on flat extensible surfaces of finite 
but increasing length in otherwise stagnant surroundings is considered. The surface 
length R is assumed to grow with time as t p  where p > 0 and the velocity at any 
location 0 < f < l? on the surface as tp-'p-'F, where n 2 0. The problem is cast 
into similarity variables and the governing parabolic differential equation shown to 
exhibit, for various combinations of n and p ,  regions of mixed mathematical diffusivity 
and reversals in the direction of convection of vorticity. Equations depicting such 
behaviour are usually termed singular parabolic and are here classified as follows: 
type-0, in which the mathematical diffusivity may be either positive or mixed but in 
which there are no reversals in the direction of convection of vorticity; type-1, in which 
the mathematical diffusivity may be either positive or mixed but in which there are 
reversals in the direction of convection of vorticity. Both types are shown to occur. 
Moreover while type-0 flows occur only when n = 1 and form with an unsteady 
separated stagnation point at the origin, type-1 flows occur only for 0 < n < 1 
and form with a steady stagnation point at the origin. Type-1 flows are further 
characterized by boundary layers with zero displacement thickness both at the origin 
and leading edge. Because singular parabolic equations require two initial conditions 
plus boundary conditions to ensure uniqueness, they are here treated numerically 
in a manner akin to elliptic boundary value problems. A successive-approximation 
implicit scheme was thus used and a wide range of cases solved in the parameter 
range n E [0,1], p E (0,2]. Amongst other things, it is shown that type-0 flows have 
lower drag than their type-1 counterparts. It is further shown that the drag on a 
flat rigid surface of finite length moving in its own plane at constant velocity and 
being continuously produced at the origin is higher than on a corresponding length of 
either a semi-infinite surface likewise produced or a semi-infinite plate in an aligned 
uniform stream; however if the surface is extensible and n > the converse is true. 

1. Introduction 
We consider a class of unsteady boundary layers that form on flat impermeable 

surfaces of finite but increasing length, in otherwise quiescent fluid. Such boundary 
layers have relevance to those which form in open bodies of deep water due to 
gusting winds (Taylor 1959) or growing oil slicks (Fay 1969). Accordingly they occur 
on plates or membranes of finite length emerging into otherwise stagnant fluid from 
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a slit in a wall; they also form behind a moving shock wave on a flat plate (Lam & 
Crocco 1959). Characteristic of some of the boundary layers so formed is that they 
have beginnings (i.e. zero displacement thickness) at both the leading edge and origin 
of the surface: the flow being asymptotic to a Blasius (1908) boundary layer at the 
former and on occasion a variant of a Sakiadis (1961) boundary layer at the latter 
(see 444, 5). It is this class of boundary layers that are of interest here. 

Not surprisingly the parabolic differential equation governing such motion has pe- 
culiar properties and cannot be treated numerically in a manner akin to 'well posed' 
parabolic equations. That is, the sign of the diffusive term, to which we here refer as 
the diffusivity or more precisely the mathematical diffusivity, is positive throughout the 
domain in well-posed parabolic differential equations, which are uniquely determined 
by given boundary conditions and an initial condition. Ill-posed parabolic equations 
on the other hand have negative diffusivity. But the boundary layers of interest are 
described by an equation that admits an essential singularity or stagnation point 
downstream of the leading edge in concert with diffusivity of mixed sign, so unique- 
ness is assured only when, in addition to appropriate boundary conditions, initial 
conditions are specified at each end of the boundary layer (Stewartson 1951; Brown 
& Stewartson 1969). Lam & Crocco (1959) term such equations, 'singular parabolic'. 

Obtaining numerical solutions in the region where the diffusivity is mixed is not 
straightforward: indeed many years passed before Hall (1969) and Dennis (1972) 
solved Stewartson's (1951) problem of a semi-infinite flat plate set impulsively into 
motion in its own plane. To proceed, Hall deferred to primitive rather than similarity 
variables while Dennis retained similarity variables but divided the solution domain 
into zones based on the characteristics of the mathematical diffusivity; methods of 
solution were then adjusted from zone to zone and artificial damping was required 
in order to stabilize the calculation. Similar approaches using Crocco variables were 
employed by Ban & Kuerti (1969) and Walker & Dennis (1972) to treat the singular 
parabolic equation describing the unsteady boundary layer flow in a shock tube, 
although Wang (1983, 1985) later found that the problems of both Stewartson and 
Lam & Crocco could be handled in a manner akin to elliptic differential equations, 
provided the two initial conditions are specified consistently. 

Boundary layers on flat stretching surfaces in otherwise stagnant unbounded fluid 
have attracted considerable attention (Stuart 1966; Crane 1970; Wang 1984; Banks & 
Zaturska 1986, and references therein), but apparently only those due to Buckmaster 
(1973), Foda & Cox (1980) and Jensen (1995) deal with boundary layers beneath 
extensible surfaces of finite extent, and of these studies (see $3) only Foda & Cox deal 
with boundary layers that have beginnings both at the origin and leading edge of the 
surface. 

Our object in the present work therefore is to consider a broad range of unsteady 
boundary layers of finite but increasing length that admit multiple beginnings. We 
thus consider a surface of length R that increases with time t as t P ,  where p > 0 and 
on which the velocity at any point 0 < F < R grows as tP+"'-'P, where n 0. The 
index p is continuously variable, although physically realizable scenarios in nature, 
at least with spreading oil, decree that p be rational. In 42 we cast the problem into 
similarity variables; then in 43 show that the governing differential equation exhibits, 
for various combinations of M and p ,  regions of mixed mathematical diffusivity and 
reversals in the direction of convection of vorticity. The resulting singular parabolic 
behaviour is thus classified as follows: type-0, in which the diffusivity may be either 
positive or mixed but in which there are no reversals in the direction of convection 
of vorticity; and type-1, in which the diffusivity may be either positive or mixed, but 
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in which there are reversals in the direction of convection of vorticity. It is further 
shown that both types 0 and 1 occur in the range 0 < n < 1 with p > 0. 

Type-0 flows are found to occur only when n = 1 and form, as previously noted by 
Jensen (1995), with what Ma & Hui (1990) term an ‘unsteady separated stagnation 
point’ (see $4) at the origin. Such stagnation points admit a plethora of solutions, 
but Buckmaster (1973) argues that the only relevant solutions are those which depict 
exponential decay (with distance from the surface). We show that two exponentially 
decaying solutions exist at each p .  Those solutions specified by the upper branch (of 
such solutions) admit forward-only flow and include particular cases of Buckmaster 
and Jensen, while solutions specified by the lower branch admit flow reversals, unless 
p < 6.8 x lop4, in which case the solutions are identical to their upper-branch 
counterparts but of opposite sign. 

Type-1 flows on the other hand form with a ‘steady stagnation point’ (see Ma & 
Hui) at the origin, occur only for 0 < n < 1 and admit forward-only flow. Such flows 
are further characterized by boundary layers with zero displacement thickness both 
at the origin and leading edge. 

In $5 we look briefly at the leading-edge flow and show it to be asymptotic to that of 
a Blasius (1908) boundary layer for all n and p ,  a result which concurs with previous 
findings at specific values of p (Buckmaster; Foda & Cox; Jensen). Our numerics are 
outlined in $6. A wide range of cases in the parameter range n E [0,1], p E (0,2] 
were solved numerically and our results are given and discussed in $7. The results 
show, inter alia, that type-0 flows have lower drag than their type-1 counterparts. The 
results also show that the drag on a flat rigid surface of finite length moving in its own 
plane at constant velocity and being continuously produced at the origin is higher 
than that on corresponding lengths of either a semi-infinite surface likewise produced 
(i.e. a Sakiadis boundary layer) or a semi-infinite plate in an aligned uniform stream 
(i.e. a Blasius boundary layer), but that if the surface is extensible and n > i, the 
converse is true. 

2. The boundary layer 
Consider a flat impermeable surface of length R which originates at the origin 

(which is fixed in space) and evolves in the absence of pressure gradients in the 
positive F-direction into otherwise quiescent unbounded fluid. Owing to the non- 
slip condition, the surface drags fluid with it, giving rise to a boundary layer flow 
in 0 < f < R, 0 < 2 < a3 with velocity components C,(F, i, t )  and C2(T, i, t )  in the 
F-, and ,?-directions. Provided R .>6, where 5 is the characteristic thickness of the 
boundary layer, we may invoke the long-wave assumption and ignore a2V,/dF2. The 
flow field, be it planar or axisymmetric, is then described by the unsteady momentum 
equation 

in combination with the planar or axisymmetric continuity equations, 

in which we have used kinematic viscosity v to rescale 6- and 2 as 6,- = V,-/v’/*, P = 
i/v ‘ I 2 .  Appropriate boundary conditions are 

6,=O on Z = O  and i j r - + O  as i - + c g .  
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rescaling our dependent variables as 
The surface is assumed to grow as t p ,  and so we seek a similarity solution by 

( 2 . 3 ~ )  -112 112- vr(r, z )  = and vz(r, z) = v t v f ,  

and our independent variables as 

r = A t - P F  and z = v-1/2t-'/2p. (2.3b) 

Here J&' is a constant whose details depend upon the physical problem at hand. These 
variables transform (2.1) into 

av, 1 av, av, dvr a2v ( p  - l )vr  - p r -  - -z- + v,- + v,- = 2 
ar 2 aZ ar aZ a z 2  

and (2.2) into 

Having reduced the number of independent variables by one, we now reduce the 
number of dependent variables by one by introducing a dimensionless stream function 
y that satisfies the planar form of (2.5) and is defined by 

av 
ar 

v, = --. aty 
V r  = z, 

Equation (2.4) may then be written, with subscripts on y denoting differentiation, 

(2.6) 1 ( p  - 1 ) ~ z  - pry,, - z z ~ z z  + vzyrz - Y r W z z  = y z z z .  

Accordingly, the axisymmetric counterpart to (2.6) is obtained by writing 

r dr 
or=-- - ,  2) =--- 1 av 

r aZ 
to yield 

Finally we allow the velocity on z = 0, v: say, to vary as rn, where n 2 0 is a 
constant. Then because R = A-'tPR at the leading edge, we see that vr = pR there, 
and thus that 

for any 0 < r d R. 
0; = pR'-"r" (2.8) 

3. Parabolic or singular parabolic behaviour? 
The hallmark of parabolic equations that describe unsteady boundary layers of 

finite length is the presence of an essential singularity or stagnation point aft of the 
leading edge. In our case this occurs in (2.4) at r = 0. We shall employ two indicators 
to determine the presence of this irregularity: diffusivity of mixed sign and a reversal 
in the direction of convection of vorticity; the two are not equivalent. 

To isolate the first we assume positive diffusivity in at least part of the domain 
r E [0, R] and z E [O,oo], and seek regions where the diffusivity is negative; this we 
do by viewing (2.4) on z = 0 where it reduces to 

a2v* 

a z 2  
J = pR1-"rn{p - np - 1 + np(r /R)n- l ) .  
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Observe that i32u~/dz2 is negative for 0 < p < 1 when n = 0 or 1 and for some 
r E [0, R] for other n E (0,l). The diffusivity is also negative for some r E [0, R] when 
n > 1 for all p > 0, but vanishes at n = 1, p = 1, and is strictly positive for n E [0,1] 
when p > 1. Thus we expect diffusivity of mixed sign for all n 2 0 and p > 0 except 
n E [0,1] when p 2 1. 

Consider now the direction of convection of vorticity and restrict attention to the 
boundaries of the flow domain; furthermore assume u, 2 0 throughout the domain 
and note that, in accord with the long-wave assumption, the dominant component of 
vorticity is o = du,/dz. Then on differentiating (2.4) with respect to z we find 

a a 1 a Z w  
(2p - l )w  + - [(v,. - pr)w] + - [(v, - p)ol = -, ar aZ a z 2  

which indicates that vorticity is convected in the flow field (v, - p r ,  v, - i z ) .  
we see that 

Consider first the flow along the z = 0 axis. Here u i  - p r  = pr"(R'-" - rl-') and 

on z = 0 for 0 d r < R (3.2) 

while u, - $ z  = 0 for 0 < r < R. Next, as z -+ 00 we see that ur - p r  < 0 and 
u, - i z  < 0 for all 0 < r < R. 

Accordingly, if in view of (2.8) we write (as r -+ 0 or R)  that u, = pR'-"r"F:(zr-fl) 
where p = (1 - n) /2  for n < 1 and 0 for n 2 1 (see 94), then as r + 0, we have 
u, /pr  = (r /R)"- 'Sb(zr-b)  and sgn(u, - p r )  depends on lim,,o(r/R)"-'Sb(zr-B). Then 
because FL(0) = 1 and if we require 9; + 0 exponentially fast as zr-B 4 CQ (see §4), 
it follows that 

1 

1 

< O  for n >  1 
= O  f o r n = l  i > O  for n <  1 

u; - pr  

on r = O  for 0 < z < 00. (3.3) 
< O  for n >  1 
= O  for n = l  I < O  f o r n < l  

ur - p r  

Furthermore u, - i z  < 0 for all n and 0 ,< z < cc at both r = 0 and R. Lastly, at 
r = R we have u, - p r  = Rp(FX - 1) < 0 for 0 6 z < CQ. 

Observe that p ,  which by definition is positive, plays no role in determining the 
direction of convection of vorticity; the key parameter is n. Specifically, with n 2 1, 
there is no convection of vorticity in the positive r-direction and (2.4) may thus be 
solved numerically in one sweep in the negative r-direction (for r E [0, R]) beginning 
at r = R. That is, although the diffusivity is mixed for 0 < p < 1 when n 2 1, 
the boundary layer begins only at r = R and (2.4) is, for computational purposes, 
parabolic. However because a stagnation point is present at r = 0 in (2.4) in such 
circumstances, and because we cannot march through r = 0, we shall here refer to 
(2.4) as singular parabolic type-0. Furthermore, because type-0 can occur both with 
(0 < p < 1) and without ( p  2 1) mixed diffusivity, we use the respective notations 
SPOm and SPO. The works of Buckmaster (1973; n = 1, p = i) and Jensen (1995; 
n = 1, p = i, i) thus belong to the class SPOm. For n < 1, however, vorticity 
is convected in both the positive and negative r-directions; moreover the diffusivity 
is mixed, at least in the parameter range 0 < p < 1 for 0 < n < 1. In this 
instance standard numerical marching techniques will fail for all Y and so we describe 
(2.4) as singular parabolic type-lm (SPlm). Foda & Cox's (1980; p = :) study of 
surface-tension-driven oil-spreading on water belongs to this class, although their u: 
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is somewhat more complicated than those described by r”. Reversals in the direction 
of convection of vorticity continue for p 2 1, a range in which the diffusivity is not 
mixed but in which marching techniques again fail; so here (2.4) (for 0 < n < 1) is 
SP1. 

Finally, although our intent is to concentrate on cases for which 0 < n < 1 for all 
p > 0, it behoves us to also explore the case n = 1. We begin by defining initial value 
problems at the origin and leading edges of our extensible surface. 

4. The boundary layer in the region r -+ 0 
Consider the boundary layer in the vicinity of r = 0. Here, in view of (2.8), we seek 

a solution of the form u, = rnf(y), where y = zr-b and p is to be determined; our 
planar and axisymmetric stream functions are thus 

q~ = r”+B~(y)  and y = r”+B+’x(y). (4.1) 
Then, substitution of (4.1) into (2.6) or (2.7) admits, in the limit r -+ 0, two possibilities 
for p. The first, /? = (1 - n)/2, yields 

x”’ - n(x‘)2 + axx” = ( p  - p n  - l)r’-”(x’ + i y f )  ( 4 4  
where a = ( n  + 1)/2 or a = ( n  + 3)/2 with the boundary conditions 

x = 0, x’ = f ( O )  = pR’-“ on q = 0 and x’= 0 as q -+ co. (4.3) 

Note that the right-hand side of (4.2) must be retained as n + 1. We see why by 
viewing the displacement thickness 6’ = /,“(ur/$)dz = r(’-”)/2x(Co)/pR’-”. Observe 
that 6‘ -+ 0 as r -+ 0 for n < 1, is non-zero but finite when n = 1 and is singular 
for n > 1, each reflecting a change in both the structure of the boundary layer and 
the differential equation that describes it. We also see that (4.2) reduces, for n > 1, 
to x’ + iqx” = 0 which does not admit solutions in accord with (4.3). In consequence 
p = (1  - n)/2 and (4.2) are appropriate only when n 6 1. 

The second possibility is restricted to n 2 1 ; here p = 0 and 

x”’ + iqx” - ( p  - p n  - 1)x’ = rl-n[n()y - yxx”] (4.4) 
where y = n or n+ 1 with (4.3). Again the right-hand side must be retained as n -+ 1, 
at which point (4.2) and (4.4) are equivalent. But as we saw in $3 the range of n of 
most interest in the present work is 0 < n < 1, so for that reason we shall not discuss 
(4.4) further. 

Looking first then to the case n = 1, we have 

f” - ()!’)2 + = - irx” (4.5) 

x = O ,  x ’ = p  on q = O ;  x ’ = O  as q - + m  (4.6) 

with the boundary conditions 

Buckmaster (1973) studied (4.5) and showed that (4.6) do not ensure uniqueness: 
rather (4.6) are satisfied by any ~ ” ( 0 )  and admit solutions that decay either alge- 
braically or exponentially with large y. But with the exception of isolated points, 
exponential decay is required in laminar boundary layers (Brown & Stewartson 1965), 
so he chose to impose such decay, which is tantamount to a uniqueness assumption. 
He identified ~ ” ( 0 )  = -0.0124 as the only value of skin friction (at p = 5 )  for which 
the decay at the boundary layer edge is exponential and for which there is no reversed 
flow. 
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FIGURE 1. The variation of ~ “ ( 0 )  with p for exponentially decaying unsteady separated stagnation 
point flow (n = 1) at the origin. Continuous line, planar flow; dotted line, radial flow. 0, Buckmaster 
(1973); f, Jensen (1995). 

In fact for each p there are two values of ~ ” ( 0 )  that lead to exponential decay, as 
we see by considering the limit p -+ 0. Here we find numerically that 

lim ~ ” ( 0 )  = Oi-, 
P-0 

the O+ and 0- values invoking identical solutions that are reversed in sign, thereby 
requiring x”’ + x’ + iqx” = 0 and (x’)~ -ax(‘ = 0 as p -+ 0. Moreover the flow is 
strictly unidirectional, being forward when ~ ” ( 0 )  = O+. But this symmetry is soon 
broken as p increases, leading to an upper and lower branch for x’’(O), as shown in 
figure 1. 

Observe that ~ ” ( 0 )  > 0 for some p on the upper branch, indicating that the velocity 
in the boundary layer exceeds that at the surface (see also 57.3). But while the flow 
remains strictly forward for all p > 0 (see figure 2a) on this branch, that is not 
the case on the lower branch, which (for p > 6.8 x lop4) gives rise to both forward 
and reversed flow (figure 2b). Thus to ensure uniqueness, we must impose not only 
exponentially fast decay but also specify whether the flow may or may not reverse. 

Two solutions - one that depicts forward-only flow, the other in which the flow 
reverses - were also observed by Ma & Hui (1990) in a general study of what 
they term ‘unsteady separated stagnation point flows’, a class into which (4.5) falls. 
Conversely, the absence of the right-hand side of (4.5) leads to ‘steady stagnation 
point flow’ which does have a unique solution. 

Turning then to II < 1, we see that the right-hand or ‘unsteady’ component of (4.2) 
vanishes as r -+ 0, so that we may assume (4.2) has a unique solution for each f(0). 
We thus consider the differential equation 

A”’ - n(2’)2 + a 2 ~ ”  = o (4.7) 

2 = 0 ,  X = l  on q = O ;  2 - 0  as q-+co,  (4.8) 

(4-9) 
Then with n = 0, equation (4.7) reduces to A”’ + aA2“ = 0. This equation describes 

the laminar boundary layer flow on a flat rigid surface moving in its own plane in the 

for A ( q )  with the boundary conditions 

such that 
X h )  = iPR 1--n 1 1/22 { ( p ~ 1 - n ) 1 / 2 v l } .  
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FIGURE 2. Velocity distributions (normalized by their peak value) arising from (a) upper-branch 

and (b) lower-branch values of the planar ~" (0 )  curve. 

v-direction, the surface being continuously produced at v = 0, where r = 0 is fixed in 
space. Sakiadis (1961) solved the planar (a  = i) case and it, and the solution to its 
axisymmetric counterpart (a = i), are sketched in figure 3. 

Lastly, for 0 < n < 1, equation (4.7) has an approximate solution of the form (Foda 
& Cox 1980) 

n(q) = S~(I - ge-adq + ve-2adq + 9e-3adq + &e-4adq + . . .) (4.10) 

where d,&?,v,9 and € are constants that follow from (4.8). Foda & Cox treat the 
planar case a = (n + 1)/2, but it is evident that (4.10) is also a solution to (4.7) for 
the case a =  (n  + 3)/2 and we find in general that 

(5a - n)2(a - n) 
64a3 

(5a - 4n)(5a - n)(a - n)  
288a3 

(a - n)3 , €=- 
192a3 ' 

Further, from the boundary condition A(0) = 0, we see that = 1 + %? + 9 + 6, while 
from X(0) = 0 we obtain d = [a(&? - 2% - 3 9  - 4&)]-1/2. 

To conclude therefore, we see that the irregularity at the origin, in what we refer 
to as SPO flows (for n = 1, see 93), presents itself as an unsteady separated stagnation 
point, while that in SP1 flows, at least of the type under consideration here, presents 
itself, for 0 < n c 1, as a steady stagnation point. 

, 9=- v =  
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1.5 

I I I I I 

0 1 2 3 4 5 6 
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FIGURE 3. Steady stagnation point flow (n = 0) at the origin showing the function x and its 

derivatives. Thin curve, planar flow (Sakiadis 1961); thick curve, radial flow. 

5. The boundary layer near the leading edge, r -+ R 
To isolate the dominant terms in (2.6), (2.7) in the region of the leading edge r -+ R, 

we relocate the origin at the leading edge and introduce the variable s, as r = R - s. 
Then since the boundary layer must grow as s ’ / ~ ,  (2.6) and (2.7) respectively become, 
as s -+ 0, 

- ~ z ~ s z  + ~ s ~ z z  = ~ z z z ,  (5.1) 

Then on writing 5 = Z S - ‘ / ~  with 

y = s”2K([) ,  (5.3) 

the planar (5.1) and axisymmetric (5.2) equations become 

(5.4) 
1 xfR - ‘ K K ” +  i R K” = 0 and K”’ - - K K “ +  1 R K” = 0, 

2 2 p  [ 2R 2 p  ‘ 
with the boundary conditions 

K = O  and d = p R  or x’=pR2 on [ = O  and x’+O as [-+co. 

Lastly, on setting K ( [ )  = pR[ + 4( [ )  or ~(5) = pR2[ + R4([) ,  where q5(l) = 
-(pR)’/2g[(pR)’/2[], we recover the Blasius (1908) equation g”’ + i g g ”  = 0 with 
g = 0, g’ = 0 on [ = 0 and g’ - 1 as [ -+ co. So, further to Buckmaster’s (1973), 
Foda & Cox’s (1980) and Jensen’s (1995) observations for specific values of p ,  we see 
that (from the reference frame of the leading edge of the surface) the flow field is 
asymptotic to that of a Blasius boundary layer for all p and n, whether the surface is 
planar or axisymmetric. 

Finally, the stream function becomes 

y = ~ ‘ / ~ { p R 5 +  Cb(5)) or y = s ‘ /~R(~RC + 4( [ ) }  as s -+ 0, (5.5) 

while the displacement thickness 6” = ~ ‘ / ~ / p R x ( c o ) .  
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6. Numerics 
In view of the singular nature of the solution at r = 0 and R, it is prudent, prior 

to any numerical treatment of (2.4), to map it to a form that directly recovers (4.2) 
when r = 0 and (5.4) at r = R. This is achieved as follows: first since y ( r , z )  takes 
the form r(rm)((n+1)/2m)-1g(rm,z) near the origin, and because v, is odd, we set m = 2. 
Then, in order to work in the domain x E [0,1], y E [0, m] and in view of the form 
of the independent variables q and [, we let 

Finally, because y has the form (4.1) near the origin and (5.3) near the leading edge, 
we write (for the planar case) 

These transform (2.4) into 

gyyy - n(1 -x)g; + $ [n + 1 - (n+ ~ ) X ] Y % ~ ,  = -;y{l- x +p[(3 - n)x  + n- I]}X('-~)/~Y YY 

+ ( p  - p n  - 1 ) ~ ( 1 - n ) q i  - x ) ~ y  + 2x(1 - x ) [ ~ y ~ x y  - Y ~ Y ~ ~ I  - 2px(3-n)/2(1 - x p X y  (6.3) 
with the boundary conditions 

9 = 0 ,  Yy = p  on y = O  and Yy - 0  as y + m  over O d x d  1. (6.4) 

It readily transpires that (6.3) does recover (4.2) when x = 0 and, with a minor 
transformation, (5.4) at x = 1 as planned; furthermore, on setting n = 1, (6.3) 
recovers a corresponding form given by Jensen (1995). The axisymmetric version of 
(6.3) follows by similar means but with x ( " + ~ ) / ~  in (6.2) replaced by x("+~) /~ .  

Of course (6.3) is also singular parabolic for 0 d n d 1 and so whether it be SPO, 
SP1 or the m sub type of either, we choose to solve it in a manner akin to boundary 
value problems described by elliptic differential equations. Further since gradients 
are O( 1) or less in (6.3), finite difference techniques, specifically second-order-accurate 
central differences, provide an appropriate approximation. Wang (1983, 1985) reports 
success in solving finite difference representations of singular parabolic equations 
using the method of successive over-relaxation, so in view of its simplicity that 
was the first technique employed. Unfortunately our fortune was at best mixed: 
convergence/numerical-stability was achieved only with severe under-relaxation, and 
even then only after various fixes reminiscent of those employed by Dennis (1972). 
Moreover we obtained convergence for only some (n,  p )  and even then only after 
several hundred thousand iterations! Foda & Cox (1980) on the other hand chose 
a successive-approximation implicit scheme to solve a second-order-accurate finite 
difference representation of (2.4) over a domain removed from r = 0 and R, the ends 
being patched to appropriate asymptotic solutions. This technique proved ideal for 
our purposes although of course patching was not required with (6.3). 

Here a solution to the whole field is obtained simultaneously. The procedure 
begins by formally writing Y = '30 + $91, with the assumption that YO is known 
and Y1/Yodl. Substitution into (6.3) and neglect of quadratic terms in 31 leads 
to a linearized version of (6.3) which is then discretized with second-order-accurate 
central differences. Difference equations at each node in the finite difference mesh of 
N = I x J unknowns give rise to a set of simultaneous linear equations which may be 
written as a matrix equation AX = B.  Coefficients in the N x N-dimensional matrix 
A and N-dimensional matrix B, are given in terms of go, while the N-dimensional 
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matrix X contains the unknown $1. But because A is square, non-symmetric, sparse 
and non-banded, conventional elimination methods for solving the linear system are 
inappropriate, as is Cholesky decomposition. The method of conjugate gradients 
(which is essentially a relaxation method) on the other hand is apt, although before 
proceeding the problem must be reset such that the coefficient matrix is symmetric and 
positive definite. Then, if 9: is the kth approximation to the difference equation at a 
particular node, the ( k  + 1)th approximation at that node is given by gk+' = gk 0 + 9 1, 
where 9, .+ 0 as k -+ GO. 

We employed a square mesh with I unknowns in the x-direction and J unknowns 
in y .  J typically exceeded I by a factor of at least four depending upon n and p ,  and 
was chosen to ensure the boundary condition G,  - 0 was well satisfied at both x = 0 
and 1 for large y.  Tests revealed little if any dependence on mesh size for I 2 5, but 
because spanwise detail suffered at the lower bound we typically set I = 10. Iteration 
continued until the largest 191/9:1 in the mesh fell below 1 x Appropriate control 
of x in (6.3) permitted calculation of (4.5) or (4.7) or (5.4) throughout the domain 
and these were used as test cases. In each case four iterations from any initial values 
for 90 were enough to satisfy our convergence criteria and yield results in agreement 
(to within five significant figures) with Runge-Kutta calculations. To check variations 
in x we calculated the SPOm case n = 1, p = i, which Jensen (1995) has solved by 
marching techniques; our results closely concur. This check took about 100 iterations, 
although some SP1 and SPlm cases took nearly ten times that. Computations were 
done on Decstation 5000/200's using double-precision arithmetic. When optimally 
compiled the time scale for calculation to our prescribed level of convergence varied, 
depending upon the value of N ,  from a few minutes to several days. 

7. Results and discussion 
We should like the governing boundary layer equation to exhibit each of the 

singular parabolic types 0, Om and 1, lm, and this can be achieved (see $3) with the 
parameter range n E [0,1], p E (0,2]. A wide selection of cases was solved in this 
range, although only those considered representative are presented here. Accordingly, 
we present solutions only to the planar equation (6.3) and, when discussing n = 1, 
restrict attention to stagnation points defined by the upper branch of figure 1 (see 
$4), as these give rise to forward-only flow. 

7.1. Diffusivity and singular parabolic behaviour 
Contours of diffusivity for three types of flow are shown in figures 4, 5 and 6. We 
begin with type-Om. Here vorticity is convected only in the negative r-direction but 
the diffusivity is of mixed sign. Such situations occur for n = 1, 0 < p < 1. Two cases 
are sketched in figure 4: that for p just less than unity and that for p just greater 
than its value at which ~ " ( 0 )  is first negative (see figures 1, 2(a)),  i.e. at which Y, is 
first a maximum at the surface. Corresponding velocity profiles are given in figure 7. 
As expected from our discussions in @3,4 the diffusivity is negative for 0 d x < 1 on 
y = 0, and, as can occur for unsteady separated stagnation points, for some y > 0 
on x = 0. The extent of the region in x, y space where the diffusivity is negative, 
however, is seen to decrease as p increases toward unity, at which point it vanishes; 
(2.4) is then SPO (figure 6a). 

Vorticity is convected in both the positive and negative r-direction, and diffusivity is 
mixed, in type-1m flows for which 0 d n < 1, 0 < p < 1. But steady stagnation points, 
which arise in such flows (see $4), do not admit solutions with negative diffusivity. 
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0 0.5 1.0 0 
X 

0.5 1.0 
X 

FIGURE 4. Contours of diffusivity in x, y space for SPOm flows: (a) n = 1, p = 0.36; (b)  n = 1, 
p = 0.95. Full lines, positive diffusivity; dashed lines, negative diffusivity. For corresponding velocity 
profiles see figure 7. 

0 0.5 1.0 0 
X 

0.5 1 .o 
X 

FIGURE 5. As figure 4 but: for SPlm flows; (a) n = 0.95, p = 0.36; (b)  n = 0, p = 0.95. For 
corresponding velocity profiles see figure 8. 

Y 

0 0.5 1 .o 
X 

0 0.5 1 .o 
X 

FIGURE 6. Contours of diffusivity in x, y space for: (a) SPO flow n = 1, p = 1; ( b )  SP1 flow n = 0, 
p = 1. For corresponding velocity profiles see figure 9. 

The velocity field at the origin is therefore quite different to its counterpart in the 
previous case, as we see by comparing figures 7(a) and 8(a). Moreover the region of 
negative diffusivity in such flows is limited to some y (including zero) in 0 < x < 1, 
as is evident in figure 5 and acts, a short distance from the origin, to lower the 
velocity gradient at the surface (figure 8a). Again, the extent of the region of negative 
diffusivity is seen to diminish as p approaches unity, where it vanishes; (2.4) is then 
SP1 (figure 6b). 

Contours of diffusivity for SP1 and SPO are a straightforward progression from 
their predecessors with mixed diffusivity (compare figures 4b and 5b with figure 6). 
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FIGURE 7. Profiles of radial velocity for n = 1: (a) p = 0.36, ( b )  p = 0.95; the profiles are equispaced 
throughout x E [O, 11. 

But the contours for SPO are markedly different from those for SP1. Specifically while 
for the most part diffusivity decreases with increasing x for SPO, there is a saddle at 
some x removed from 0 or 1 for SP1 and gives rise to a velocity field which penetrates 
to larger y ;  see figure 9. 

Few if any of these features are evident from contours of the stream function w, 
although overlaying the displacement thickness 6" = x(l-")l4(l - x)'/*G(x, m)/p as we 
have done in figure 10 is helpful. Figures 10 and 11 also reflect the fact that 6' is zero 
at x = 0 for steady separated stagnation points and non-zero at x = 0 for unsteady 
separated stagnation points (see $4). We further note (figure 11) that the maximum 
value of 6' increases as p diminishes (see also 97.3); this is in accord with the role 
of p ,  which acts to accelerate material points in the flow for p > 1 and decelerate 
them for p < 1. Furthermore, while 6* is clearly a maximum at r = 0 for SPO and 
SPOm flows, the maximum location for SP1 and SPlm flows varies with p ,  from near 
r /R  = 0.5 for p l ,  to closer to the leading edge as p diminishes. Figure 11 also 
suggests that the peak values of 6' do not vary much with n for given p ,  and results 
for other 0 < n < 1 (not shown) concur. Of course the detailed variation of 6' with r 
as r -+ 0 does vary with n, as is to be expected from the appropriate asymptotic form 
of 6*. 
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RGURE 8. Profiles of radial velocity for (a)  n = 0.95, p = 0.36 and (b)  n = 0 with p = 0.95; 
the profiles are equispaced throughout x E [0,1]. 

7.2. Surface shear stress and drag 
Of particular interest are the drag on the surface and the distribution of shear stress 
along it. Let C, be the local skin friction coefficient defined by the shear stress on 
the surface divided by pi$, where fii is the surface velocity at F = R and p the 
density, and introduce a Reynolds number as Re = i@/v. Then for C, 2 0 we 
have CfRe’/2 = -X(3n-1)/4 (1 - x ) ’ / ~ ~ , , ( x ,  0), although for presentation purposes it is 
appropriate to write 

so that 

while 
1 

9yy(l,0) = g”(0) as r -+ R. p - 3 / 2 2  -p -3 /2  - 
4 
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FIGURE 9. Profiles of radial velocity for (a) n = 1, p = 1 and ( b )  n = 0, p = 1; the profiles are 
equispaced throughout x E [0, I]. 

Correspondingly we define the drag coefficient CD as the drag per unit width on two 
sides of the surface divided by pug ; then for CD 3 0 we have 

Consider first a surface of finite length moving in its own plane at constant velocity 
from its source at x = 0. Then n = 0, p = 1 and the flow field is asymptotic to 
a Blasius (1908) boundary layer at the leading edge and a Sakiadis (1961) layer at 
the origin. The ensuing distributions of z are sketched in figure 12 along with z for 
Stewartson's (195 1) impulsively started semi-infinite flat plate (that achieves constant 
velocity in its own plane). Observe that beyond a mutual recovery of Blasius's result 
at r / R  = 1 the two distributions of z share little in common: Stewartson's curve (first 
obtained by Hall 1969 and Dennis 1972) monotonically increases from the leading 
edge while the present curve first decreases before increasing. Of course the flow field 
at r = 0 is vastly different in each problem: in our case the surface is continually 
produced at r = 0 giving rise to a steady stagnation point flow (see §4), while at the 
same location Stewartson's boundary layer is asymptotic to a Rayleigh (1911) shear 
layer (i.e. the flow generated by starting an infinite flat plate to move in its own 
plane at constant velocity). Here there is no stagnation point but rather an essential 
singularity (a Stewartson singularity) which is manifested as a solution that is not 
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FIGURE 10. Distribution of the similarity variable for (a) n = 1, p = 1 and (b)  n = 0, p = 1 with 

analytically continuous to x < 0, even though all derivatives with respect to (1 - x)-l 
(an appropriate independent variable which arises from the similarity transformation) 
are continuous at x = 0. Physically, the region r / R  E [0,1] is that in which the 
boundary layer at the leading edge is aware of and interacts with its counterpart 
from the origin. Thus, because the two curves for z are so different, it is evident that 
events at the origin are not local but profoundly affect the whole flow field. 

Turning then to the drag, we note that the while CDRe'12 = 1.3282 and 1.7759 for 
Blasius and Sakiadis boundary layers respectively, the present layer ( n  = 0, p = 1) 
yields a value of CDRe'12 = 2.2297. This higher level is meaningful physically in view 
of the interacting leading edge and origin boundary layers but is not to be expected 
from figure 12 which, as is evident from (7.1) gives a somewhat deceptive view of 
shear stress. 

Distributions of z for other values of p for n = 0 and n = 1 are also drawn in 
figure 12. Since Y(0) depends on n but not p for n c 1, the same (with p )  steady 
stagnation point flow applies at r = 0 in each SP1 or SPlm case. But that is not so 
for n = 1, where the flow now contains an unsteady stagnation point whose details 
vary with p ,  as we saw previously in figure 2(a). Interestingly, SPO or SPOm flows 
cause less drag at given p than their SP1 or SPlm counterparts, as we see in figure 13. 
The reason, as is evident from figures 4(a) and 5(a), 4(b) and 5(b), and 6(a)  and 
6(b),  is because of differences in the diffusion field resulting from different types of 
stagnation points at r = 0. But it would be wrong to gain the impression that all SP1 
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FIGURE 11. The variation of 6' with r / R  for (a) n = 1 and ( b )  n = 0 for various values of p .  

and SPlm flows lead to drag higher than what would arise in Blasius or Sakiadis 
flow: indeed, as we see from figure 13, the drag is lower than these reference points 
for many extensible (0 < n < 1) and some non-extensible ( n  = 0) surface flows. 

7.3. A note on the case 0 < p <1 
Physical arguments suggest that the more rapidly (slowly) the surface grows, the 
greater (lower) the drag, and this is reflected in figure 13. But as noted in $4 there is 
a value of p ,  pcrit say, below which there is a change in the direction of surface shear 
stress (see figure 2a) and it is appropriate to ask whether solutions to (6.3) and (6.4) 
exist for p < pcrit? Local stress reversals correspond of course to a decrease in drag, 
but they also indicate v, is a maximum not at the surface but within the boundary 
layer proper. The dilemma unfortunately is that in the absence of imposed pressure 
gradients and with a flow driven by an extensible surface such as we have, it is difficult 
to imagine local stress reversals occurring. Of course nature prudently avoids the 
dilemma by setting p = for gravity-viscous ( n  = 1) planar spreading of an oil slick 
of constant mass (see Buckmaster 1973) and p = for its axisymmetric counterpart, 
each a tad higher than their respective pcrit  values of approximately 0.3551 and 0.2378. 
But nature notwithstanding, we were able to obtain numerical solutions for p < pcrit 
which satisfied our convergence criteria (see $6); two such results are sketched in 
figures 11 and 12. So we then asked whether there is a positive value of p at which 
CDRel/* = 0, and if so, do solutions exist at smaller values of p ?  
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FIGURE 12. Variation with r / R  of the shear-stress-related variable z for (a )  n = 1 
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FIGURE 13. Variation of dimensionless drag CDRe'12 with p for various values of n. 

For SPlm flows the answers appear to be no and thus no; in that so far as we could 
ascertain numerically, limp,,,+ CDRel/* > 0. But for SPOm ( n  = 1) flows, the answers 
are yes and yes; indeed the lowest curve on figure 13 continues through zero (at 
p w i p c r i t )  to depict negative drag! Of course 6' increases significantly as p decreases, 
so this drag result probably indicates breakdown of the long-wave assumption upon 
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which our analysis is based (which assumes the surface length R greatly exceeds 
the characteristic thickness of the boundary layer flow). But it is doubtful that the 
long-wave assumption has broken down at p = pcrit and it would be most interesting 
to construct an experiment (at least for n = 0 spreading) to see just what does happen 
for p < Pcr i t .  

8. Conclusions 
A family of similarity solutions is shown to describe a class of unsteady boundary 

layers that form on flat extensible surfaces of finite but increasing length in otherwise 
stagnant surroundings. In this class the surface length R is assumed to grow with 
time as t P  where p > 0 and the velocity at any location 0 d r d R on the surface 
as t P " P - ' P ,  where n 2 0. It is further shown that although the equation comprising 
the similarity solution is parabolic, various combinations of n and p invoke regions 
of mixed mathematical diffusivity and reversals in the direction of convection of 
vorticity, rendering the equation singular parabolic. Such behaviour is herein classified 
according to whether the mathematical diffusivity is positive or mixed and whether 
or not there are reversals in the direction of convection of vorticity. It is further 
shown that such peculiarities affect the type of stagnation point, be it steady or 
unsteady separated, that is formed at the origin. Such details are important because 
conventional marching techniques to solve parabolic equations are shown to fail for 
all cases for which a steady stagnation point occurs at the origin; these cases must 
be treated in a manner akin to elliptic boundary value problems. The numerical 
solution of a wide range of cases in the parameter range n E [0,1], p E (0,2] reveal, 
amongst other things, that at specified p ,  extensible surfaces have lower drag than 
their non-extensible counterparts. 
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